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Crossover exponent in O„N… f4 theory at O„1ÕN2
…
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The critical exponentfc , derived from the anomalous dimension of the bilinear operator responsible for
crossover behavior in O(N) f4 theory, is calculated atO(1/N2) in a largeN expansion in arbitrary space-time
dimensiond5422e. Its e expansion agrees with the knownO(e4) perturbative expansion and information on
the structure of the five-loop exponent is provided. Estimates offc and the related crossover exponentsbc and
gc , using Pade´-Borel resummation, are provided for a range ofN in three dimensions.
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Renormalization group techniques have been widely u
to study the critical properties of the scalar quantum fi
theories underlying a variety of condensed matter syste
For instance, Wilson and Fisher@1–3# introduced the tech-
nique of extracting numerical estimates of critical expone
from the evaluation of the perturbatively calculated ren
malization group functions at several loop orders inf4 theo-
ries. Subsequently various authors have developed
method to very high loop orders either in fixed,~three!,
space-time dimensions or ind5422e dimensions. The re-
sults for various renormalization group functions at, resp
tively, six and five loops, which represents the highest ord
computed, are given in Refs.@4,5#. In the latter case the
results have been extrapolated to three dimensions usin
summation techniques@5–7#. These exponents derived b
the renormalization group method are competitive with ot
approaches such as the high-temperature series expa
and Monte Carlo results and are in good agreement w
experiment. A recent and comprehensive review of the ap
cation of the renormalization group in this area is given
Ref. @8#. Recently the critical exponent corresponding
crossover behavior in O(N) f4 theory has been calculated
a new degree of accuracy in fixed dimension@9# where the
relevant Feynman diagrams were calculated tosix loops. One
motivation for that study rests in the realization that theN
55 theory of superconductivity has been observed in na
@10#. Prior to this the same exponent had been compute
four loops inMS in d5422e perturbation theory in Ref
@11#, which built on the lower loop calculations of Ref
@3,12#. The resulting numerical estimate for that crosso
exponent was in agreement with the high-temperature se
of Ref. @13#. One other field theoretic technique that is us
in estimating critical exponents is the largeN method where
the exponents are computed order by order in powers of 1N.
Indeed exploiting the conformal properties of th
d-dimensional Wilson-Fisher fixed point the technique h
successfully produced the critical exponenth at O(1/N3) in
d dimensions@14# through use of the conformal bootstra
program. Moreover, this method had developed out of
earlierd-dimensional critical point technique of Refs.@15,16#
that was based on analyzing Schwinger-Dyson equation
criticality in largeN. In essence the method efficiently repr
duces the bubble summation that is the main property ofN
expansions but more importantly goes beyond the lead
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order that the conventional bubble sum calculations fail
handle easily. Moreover, since the exponents are expre
as a function ofd they can be expanded in powers ofe and
the coefficients compared with those of the same expon
computed in conventional perturbation theory. Due to
critical renormalization group the coefficients must be
agreement. Therefore, the information contained in the la
N exponents can be exploited, for instance, to gain insi
into the large order structure of the renormalization gro
functions at several orders in 1/N. Given the recent interes
in the crossover exponent we will focus in this paper on
evaluation at aneworder in 1/N in O(N) f4 theory. Previ-
ously the exponent had been calculated atO(1/N) in
d-dimensions in Refs.@17,18#. To achieve this we follow the
extension of the largeN fixed point Schwinger-Dyson ap
proach of Refs.@15,16#, to the computation of the anomalou
dimensions of composite operators@19#.

We recall the essential points of our calculation. T
crossover exponent we are mainly interested in,fc , is com-
puted from the anomalous dimension of the bilinear trace
symmetric tensor,

Tab5fafb2 ~dab/N!fcfc, ~1!

wherefa is the field of the O(N) f4 theory and 1<a<N,
through the scaling law

fc5~22hc!n. ~2!

This composite operator is relevant for a variety of critic
phenomena@9,13,20,21#. The exponentn has been computed
in d dimensions atO(1/N2) in Ref. @16#. To clarify with
other work@9# the exponenthc is related to two other expo
nentsh andhO by

hc5h1hO , ~3!

whereh is the anomalous dimension of the fieldfa and has
been computed atO(1/N3) in Ref. @14#. The remaining ex-
ponenthO is the anomalous dimension of the bare compos
operatorTab itself. We have chosen to express the relati
for fc in this way since in a gauge theory the combinati
hc would be independent of a covariant gauge param
although the analogoush andhO would each depend on th
choice of gauge. In the largeN critical point method of Ref.
©2002 The American Physical Society02-1
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@19# the exponenthO is extracted by inserting the operat
Tab in a two point Green’s function and extracting the re
due of the simple pole with respect to the largeN regulariza-
tion in a well defined fashion according to Refs.@15,16#. The
residues of the simple pole of each Feynman diagram
then combined to obtainhO . Before recalling how this regu
larization is introduced we note that the Lagrangian used
the largeN technique is

L5 1
2 ]mfa]mfa1 1

2 sfafa2 ~3s2/2g! , ~4!

whereg is the coupling constant and the fields is auxiliary.
Its elimination produces the usualf4 interaction. The
method of Refs.@15,16,19# elegantly exploits the propertie
of the d-dimensional Wilson-Fisher fixed point in that, fo
example, the~massless! propagators of the fields of Eq.~4!
have simple power law behavior. In momentum space, r
resenting the propagator by the same letter as the field
leading asymptotic scaling forms in the critical region are

f~k!;
A

~k2!m2a
, s~k!;

B

~k2!m2b
, ~5!

whered52m and A and B are the momentum independe
amplitudes that always appear in the combinationz5A2B in
the computation of the Feynman diagrams. The powers
the propagators are related to the usual critical exponent

a5m211 1
2 h, b522h2x, ~6!

wherex is the anomalous dimension of thesf2 vertex. It
can also be determined from a scaling law involvingn,

x5 ~1/n!2h22~m21!, ~7!

wheren is proportional to the critical slope of the couplin
constant of the O(N) nonlinears model that is in the same
universality class as Eq.~4! in 2,d,4. In the largeN criti-
cal point technique the propagators in the Feynman diagr
of a Green’s function are represented by Eq.~5!. However, in
their present form when they are used to computehO the
leading order largeN graphs diverge. To regularize thes
infinities the regulatorD is introduced by settingx→x1D.
Consequently the Feynman diagrams involve poles inD
analogous to those in conventional perturbation theory wh
e in d5422e is the ~dimensional! regularization. It is the
residues of these simple poles inD which are then used to
extracthO . It is worth stressing that we will compute th
exponent ind dimensions whered is arbitrary ande is not
used as a regularization.

For the largeN renormalization of the composite operat
Tab it turns out that only those Feynman diagrams where
operator is not within a closedfa field loop will contribute
to hO . This is a consequence of the traceless nature of
operator. Diagrams whereTab is inside a closedfa loop
vanish when one computes the group theory factor of
graph. Therefore, at leading order,O(1/N), there is only one
Feynman diagram to calculate and applying the method
Ref. @19#, we find

hO,152 ~mh1!/~m22! , ~8!
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where

hO5(
i 51

`

~hO,i /N
i ! ~9!

with

h152
4G~2m22!

G~m11!G~m21!G~m22!G~22m!
~10!

and

h5(
i 51

`

~h i /N
i ! . ~11!

Consequently, we have

fc5
1

~m21!
1

2mh1

~m21!~m22!N
1O~1/N2!, ~12!

which is in exactagreement with Refs.@17,18#, though ex-
tracted with a minimal amount of effort. In three dimension
Eq. ~12! gives

fc522
32

p2N
1O~1/N2! ~13!

or using a Pade´ approximant

fc5
2

@11 ~16/p2N!#
. ~14!

Interestingly evaluating Eq.~14! for N52, 3, 5, and 16 we
find the respective valuesfc51.105, 1.298, 1.510, and
1.816. These are relatively close to the values obtained
other methods@9# that are given in Table I. Indeed the es
mate for N53 is remarkably good. By contrast the dire
evaluation of Eq. ~13! gives respectively 0.379, 0.919
1.352, and 1.797 indicating its poor convergence for lowN.

To determinehO,2 we have repeated the method on t
O(1/N2) diagrams. Due to the way the largeN expansion
orders this would ordinarily mean that graphs up to fi
loops would have to be calculated. However, when the gr
theory factor is computed only six diagrams remain with
nonzero coefficient. These are comprised of four two-lo
and two three-loop graphs. As a check on our method
calculation we have redeterminedn2 from the evaluation of
the exponentx2 using the same computer program written
the symbolic manipulation languageFORM @22#. The method

TABLE I. Values of crossover critical exponents from Ref.@9#.

N fc bc gc

2 1.184~12! 0.830~12! 0.354~25!

3 1.271~21! 0.863~21! 0.41~4!

4 1.35~4! 0.90~4! 0.45~8!

5 1.40~4! 0.90~4! 0.50~8!

8 1.55~4! 0.94~4! 0.61~8!

16 1.75~6! 0.98~6! 0.77~12!
2-2
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of extractingx2 is the same as that forhO,2 since the Feyn-
man diagrams for the latter are equivalent to those for
former when the operator insertion is replaced by thesf2

vertex. Therefore, the result of our calculation is

hO,25F S 2m151
14

~m22!
1

8

~m22!2D v812m12

1
1

~m22!
2

8

~m22!2
2

8

~m22!3
1

1

2~m21!Gh1
2 ,

~15!

where

R15c8~m21!2c8~1!,

R25c8~2m23!2c8~22m!2c8~m21!1c8~1!,

R35c~2m23!1c~22m!2c~m21!2c~1!,

v85c~2m22!1c~22m!2c~m22!2c~2!, ~16!

andc(x) is defined byc(x)5G8(x)/G(x) whereG(x) is the
Euler gamma function. Consequently,

fc5
1

~m21!
1

2mh1

~m21!~m22!N

1F3m2~8m2221m114!R1

2~m21!~m22!3

2
m2~2m23!2

~m21!~m22!3
@R3

21R2#

1
m~4m3214m2110m11!

~m21!2~m22!2
v8221

6

~m22!

2
41

~m22!2
2

4

~m22!3
2

15

~m21!
1

1

~m21!2

1
3

2~m21!3Gh1
2

N2
1OS 1

N3D . ~17!

To check the correctness of Eq.~17! we have evaluatedfc at
O(e4) in d5422e and compared with the previous dime
sionally regularized four-loopMS perturbative calculation o
the same critical exponent. The result~17! is in exact agree-
ment, which is a nontrivial check on our computation sin
only three-loop graphs are present atO(1/N2). With Eq. ~17!
we can expand to aneworder ine and find

fc511e1e21e31e41e5

2@8e28e3216$12z~3!%e4224$12z~4!%e5#~1/N!

1@64e2124e224$43160z~3!%e3

1$640z~5!2360z~4!1976z~3!2155%e4
02710
e

e

12$800z~6!21840z~5!1732z~4!1128z2~3!

2144z~3!161%e5#~1/N2! 1O~e6/N3!, ~18!

wherez(n) is the Riemann zeta function and the order sy
bol represents independently higher-order terms ine and
1/N. The O(e5) coefficients will be important in future ex
plicit five-loop MS perturbative calculations.

We are now in a position to examine the critical exp
nents in three dimensions. For the various ones we are in
ested in we have

fc522
32

p2N
2

64@9p2116#

9p4N2
1OS 1

N3D ,

hc5
32

3p2N
2

512

27p4N2
1OS 1

N3D ,

hO5
8

p2N
1OS 1

N3D . ~19!

For reference, the other intermediate exponents are

h5
8

3p2N
2

512

27p4N2
1OS 1

N3D ,

~20!

n512
32

3p2N
2

32@27p21104#

27p4N2
1OS 1

N3D .

In addition we record that the values of two related crosso
critical exponents are

bc512
32@p218#

p4N2
1OS 1

N3D ,

~21!

gc512
32

p2N
2

32@9p2240#

9p4N2
1OS 1

N3D ,

which are defined through the hyperscaling laws

bc52mn2fc ,gc52fc22mn. ~22!

Clearly theO(1/N2) correction tofc is large and the serie
appears to diverge. By contrast theO(1/N2) correction tohO
vanishes in three dimensions. We have repeated our ea
Padéapproach forfc to see if the convergence is improve
but this does not lead to a small change to the previ
values for the exponents. This is in part due to the fact t
the exponentsh and n do not lend themselves to improve
ment by this approach. Instead one way of gaining estima
from our largeN results is to use the accepted values ofh
and n and our value forhO . Indeed in Ref.@11# the four-
loop estimate forfc was determined in an analogous fas
ion. Therefore, takingh to be 0.033 and 0.033 andn to be
0.669 and 0.705 forN52 and 3, respectively@7# we find the
values forfc are 1.044 and 1.196. These are in poor agr
ment with the respective results of Ref.@9#. For the expo-
nentsbc and gc the largeN corrections are also large fo
2-3
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small N and each series appears to converge slowly. To
preciate this we have evaluated the above expressions
larger values ofN. For N 5 8 we find fc51.475, bc
50.908, andgc50.567. By contrast whenN516 our ex-
pressions give 1.767, 0.977, and 0.790 for the same res
tive exponents which, by contrast, compare much more
vorably with the respective values of 1.75(6), 0.98(6), and
0.77(12) of Ref.@9#.

In order to improve the convergence of the series we h
also examined the Pade´-Borel resummation of the largeN
series. This involves determining the Borel function of t
series that is defined by

(
n50

`

anxn5
1

xE0

`

dt e2t/x(
n50

`
antn

n!
, ~23!

and then taking a Pade´ approximant of the integrand give
that only several terms in the series are known. Theref
for fc its Pade´-Borel estimate is

fc52NE
0

`

dt
e2Nt

@12a1t1~a1
22 1

2 a2!t2#
, ~24!

where

a152
16

p2
, a252

32@9p2116#

9p4
. ~25!

We have evaluated the integral numerically for various v
ues ofN and recorded the results in Table II where the e
mates forbc andgc by the same method are also given. T
final column is the sum of the estimates in the second
third columns and represents another way of estimatingfc
through the scaling relation since we have noted that
large N series forfc appears to diverge rapidly for lowN.
For N>4 the largeN estimates forfc and the sumbc1gc
02710
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are in fairly reasonable agreement. ForN52 and 3 the esti-
mates undershoot those of Ref.@9# though the combination
bc1gc is closer. For the other exponents the values forbc
are competitive forN>5 whilst those forgc appear to be in
good agreement for the lower range ofN.

In conclusion, we have provided theO(1/N2) corrections
to a set of crossover exponents related to the composite
erator Tab in O(N) f4 theory. Although the leading orde
exponents could be summed to give numerical estimates
are competitive with explicit perturbative calculations
three dimensions thenew higher-order correction indicate
that the series are slowly converging. Applying the Pa´-
Borel resummation technique generally improves the e
mates in comparison with the results of Ref.@9# though it
ought to be borne in mind thatO(1/N2) results represen
only three terms of a series in contrast to Ref.@9# which
analyzed six terms of a series. Nevertheless since the cri
exponents are computed ind dimensions they will comple-
ment future higher-order perturbative calculations and, f
ther, the largeN method can equally be applied to the dete
mination of crossover exponents of bilinear and oth
composite operators to the same largeN order in this and
other scalar quantum field theories which underpin criti
phenomena.

TABLE II. Padé-Borel estimates of crossover exponents.

N fc bc gc bc1gc

2 0.988 0.664 0.367 1.031
3 1.187 0.768 0.459 1.227
4 1.323 0.830 0.529 1.359
5 1.422 0.871 0.582 1.453
8 1.603 0.934 0.689 1.623
16 1.790 0.980 0.817 1.797
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