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Crossover exponent in GN) ¢* theory at O(1/N?)
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The critical exponentp., derived from the anomalous dimension of the bilinear operator responsible for
crossover behavior in ™) ¢* theory, is calculated & (1/N?) in a largeN expansion in arbitrary space-time
dimensiond=4— 2e. Its € expansion agrees with the know@{ e*) perturbative expansion and information on
the structure of the five-loop exponent is provided. Estimates.aind the related crossover exponeftsand
¥e, using PadéBorel resummation, are provided for a rangeNbin three dimensions.

DOI: 10.1103/PhysReVvE.66.027102 PACS nunier05.70.Jk, 64.60.Fr, 11.15.Pg

Renormalization group techniques have been widely usedrder that the conventional bubble sum calculations fail to
to study the critical properties of the scalar quantum fieldhandle easily. Moreover, since the exponents are expressed
theories underlying a variety of condensed matter systemss a function ofd they can be expanded in powerseénd
For instance, Wilson and Fishgt—3] introduced the tech- the coefficients compared with those of the same exponents
nigue of extracting numerical estimates of critical exponentomputed in conventional perturbation theory. Due to the
from the evaluation of the perturbatively calculated renor-critical renormalization group the coefficients must be in
malization group functions at several loop ordergththeo-  agreement. Therefore, the information contained in the large
ries. Subsequently various authors have developed thi¥ exponents can be exploited, for instance, to gain insight
method to very high loop orders either in fixethree, into the large order structure of the renormalization group
space-time dimensions or oh=4—2e dimensions. The re- functions at several orders inN/ Given the recent interest
sults for various renormalization group functions at, respecin the crossover exponent we will focus in this paper on its
tively, six and five loops, which represents the highest ordergvaluation at aneworder in 1N in O(N) ¢* theory. Previ-
computed, are given in Ref§4,5]. In the latter case the ously the exponent had been calculated G¢1/N) in
results have been extrapolated to three dimensions using rd-dimensions in Refd.17,18. To achieve this we follow the
summation techniquefs—7]. These exponents derived by extension of the largéN fixed point Schwinger-Dyson ap-
the renormalization group method are competitive with otheiproach of Refs[15,16], to the computation of the anomalous
approaches such as the high-temperature series expansidimensions of composite operatddg].
and Monte Carlo results and are in good agreement with We recall the essential points of our calculation. The
experiment. A recent and comprehensive review of the applierossover exponent we are mainly interestedfip, is com-
cation of the renormalization group in this area is given inputed from the anomalous dimension of the bilinear traceless
Ref. [8]. Recently the critical exponent corresponding tosymmetric tensor,
crossover behavior in M) ¢* theory has been calculated to
a new degree of accuracy in fixed dimens[&h where the TaP= 2P~ (52°IN) ¢ 4", 1)
relevant Feynman diagrams were calculatesixdoops. One a i 4
motivation for that study rests in the realization that the Where#* is the field of the ON) ¢ theory and ka<N,
=5 theory of superconductivity has been observed in naturd"ough the scaling law
[10]. Prior to this the same exponent had been computed to be=(2—no)v )
four loops inMS in d=4—2¢ perturbation theory in Ref. ¢ o
[11], which built on the lower loop calculations of Refs. This composite operator is relevant for a variety of critical
[3,12]. The resulting numerical estimate for that crossovelphenomen$9,13,20,21 The exponent has been computed
exponent was in agreement with the high-temperature serigg d dimensions atO(1/N?) in Ref. [16]. To clarify with

of Ref.[13]. One other field theoretic technique that is usedother work[9] the exponenty, is related to two other expo-
in estimating critical exponents is the larlyemethod where  nentsy and 7, by

the exponents are computed order by order in powershbf 1/

Indeed exploiting the conformal properties of the Ne=1+ 70, 3
d-dimensional Wilson-Fisher fixed point the technique has

successfully produced the critical exponenat O(1/N%) in ~ where 7 is the anomalous dimension of the figld and has

d dimensions[14] through use of the conformal bootstrap been computed a(1/N3) in Ref.[14]. The remaining ex-
program. Moreover, this method had developed out of thgponentn,, is the anomalous dimension of the bare composite
earlierd-dimensional critical point technique of Refd5,16  operatorT@® itself. We have chosen to express the relation
that was based on analyzing Schwinger-Dyson equations &r ¢, in this way since in a gauge theory the combination
criticality in largeN. In essence the method efficiently repro- . would be independent of a covariant gauge parameter
duces the bubble summation that is the main propertyMf 1/ although the analogoug and 7, would each depend on the
expansions but more importantly goes beyond the leadinghoice of gauge. In the lardé critical point method of Ref.
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[19] the exponenty,, is extracted by inserting the operator ~ TABLE I. Values of crossover critical exponents from Rie].
T2 in a two point Green’s function and extracting the resi-

due of the simple pole with respect to the lafgeegulariza- N be Be Ve

tlon in a well deﬁn-ed fashion aCCOfding to Rdj$5,1q The 2 1.18412) 0.83012) 0.35425)

residues o.f the S|mplg pole of each ngnman dlggram are 3 1.27121) 0.86321) 0.41(4)

then combined to obtain,. Before recalling how this regu- 4 1.354) 0.904) 0.458)

Iarizlationl\:s inthro_ducepl we note that the Lagrangian used in 5 1.404) 0.904) 0.508)

the largeN technique is 8 1.554) 0.944) 0.618)
L= %3M¢aaﬂ¢a+ % TP~ (302/29) ’ (4) 16 1.7%6) 0.986) 0.7712)

whereg is the coupling constant and the fieddis auxiliary.

lts elimination produces the usuap* interaction. The Where

method of Refs[15,16,19 elegantly exploits the properties i '

of the d-dimensional Wilson-Fisher fixed point in that, for ’70:;1 (70,i/N") (9)

example, themasslesspropagators of the fields of E¢4)

have simple power law behavior. In momentum space, rep\;vi,[h

resenting the propagator by the same letter as the field, the

leading asymptotic scaling forms in the critical region are AT (2pu—2)

=- 10
5 N Gt DN (- Dl (a-2T 2= 0
k)~ , K)y~————, 5
o0~ e 0 e 6
whered=2u and A andB are the momentum independent _ . N
amplitudes that always appear in the combinaiemA?B in K ; (/N (11)
the computation of the Feynman diagrams. The powers of
the propagators are related to the usual critical exponents Byonsequently, we have
_ _ 1 2
a=p—1+39, B=2-7n—x, (6) _ + P oY), (12
| o P D) u-Du-2n 0N (2
where y is the anomalous dimension of tlep? vertex. It o _
can also be determined from a scaling law involving which is in exactagreement with Ref§17,18, though ex-
tracted with a minimal amount of effort. In three dimensions,

x= (1v)=n=2(p—-1), (D Eq.(12) gives

wherev is proportional to the critical slope of the coupling 32

constant of the Q) nonlinearo model that is in the same Pe=2— T+O(1/N2) (13
universality class as E@4) in 2<d<4. In the largeN criti- TN
cal point technique the propagators in the Feynman diagrams . . .
of a Green'’s function are represented by Ex). However, in or using a Padepproximant

their present form when they are used to compuyiethe 2
leading order largeN graphs diverge. To regularize these ¢C=—2. (14
infinities the regulaton is introduced by setting— y+A. [1+ (16/7°N)]

Consequently the Feynman diagrams involve polesAin
analogous to those in conventional perturbation theory wher
€ in d=4-2¢ is the (dimensional regularization. It is the
residues of these simple poles Anwhich are then used to
extract n,. It is worth stressing that we will compute the
exponent ind dimensions wherel is arbitrary ande is not
used as a regularization.

For the largeN renormalization of the composite operator
T2 it turns out that only those Feynman diagrams where the*O
operator is not within a close@? field loop will contribute (
to n». This is a consequence of the traceless nature of th
operator. Diagrams wher&?® is inside a closedp? loop
vanish when one computes the group theory factor of th
graph. Therefore, at leading ord€(1/N), there is only one

terestingly evaluating Eq14) for N=2, 3, 5, and 16 we
ind the respective valueg).=1.105, 1.298, 1.510, and
1.816. These are relatively close to the values obtained by
other method$9] that are given in Table I. Indeed the esti-
mate forN=3 is remarkably good. By contrast the direct
evaluation of Eq.(13) gives respectively 0.379, 0.919,
1.352, and 1.797 indicating its poor convergence for kw
To determineny, we have repeated the method on the
1/N?) diagrams. Due to the way the largé expansion
rders this would ordinarily mean that graphs up to five
oops would have to be calculated. However, when the group
éheory factor is computed only six diagrams remain with a
nonzero coefficient. These are comprised of four two-loop
Feynman diagram to calculate and applying the method o"Fmd two three-loop graphs. ’A.‘S a check on our m_ethod of
Ref. [19], we find calculation we haye redetermined from the evaluatlo_n of_
the exponenj, using the same computer program written in
Nor=— ()l (u—2), (80  the symbolic manipulation languagerm [22]. The method
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of extractingy, is the same as that foy, , since the Feyn-
man diagrams for the latter are equivalent to those for the

+2{800{(6) — 1840(5) + 732 (4) + 1282(3)

former when the operator insertion is replaced by hg?
vertex. Therefore, the result of our calculation is

No.2= 2M+5+(u1—42)+(ﬂ—2)2 v +2u+2
L+t 8 8 1 2.
(r=2) (u=2)2 (u—2)° 2(p—1)

(15
where
Ri=¢'(u=1)—¢'(1),
Ro=o'u=3)— ' (2= ) =" (n=1)+4' (1),
Ry=y(2u—3)+ (2~ p) — d(pn—1)—4(1),
V' =Y(2u—=2)+ (2 p) = p(n—2)—4(2), (16)

andy(x) is defined by (x) =T""(x)/T'(x) wherel'(x) is the
Euler gamma function. Consequently,

_ 1 N 2pum
(u=1) (p—=1)(x—2)N

. 3u?(8u?—21u+14)R,
2(p—1)(n—2)3
B u?(2u—3)?
(u—=1)(n—2)>3

. w(Apl—14p2+10p+1)

be

[RE+R;]

(—1)2(n—2)2 w2
a4 15 1
(k=22 (p-2°% (=1 (u-1)?
3 77% 1
+2(M_1)3 N2+O N3>' a7

To check the correctness of Ed.7) we have evaluateg, at

—144£(3) + 61 €°](1/N?) + O(€®/N3), (18)
where{(n) is the Riemann zeta function and the order sym-
bol represents independently higher-order termse iand
1/N. The O(eS)ﬂJefﬁcients will be important in future ex-
plicit five-loop MS perturbative calculations.

We are now in a position to examine the critical expo-
nents in three dimensions. For the various ones we are inter-
ested in we have

=2 32 6497%+16] 1
¢ 2N 97*N?2 N3/
32 512 ‘o 1
TeT3aIN 27mN2 N3/’
B 1
7]0__772N+O Nl (19

For reference, the other intermediate exponents are

8 512 1
TN 27N O N_)’
% sxemmrioq (1 (20
37N 27m*N? N3/

In addition we record that the values of two related crossover
critical exponents are
1
O YR
N

3 w°+8]
-

N2

Bc=1

_,_ 32 37on*-40) 1 @D
ve 7N 97N2 NEF
which are defined through the hyperscaling laws
Be=2pv—dc,¥c=2¢c—2pv. (22

Clearly theO(1/N?) correction to¢, is large and the series
appears to diverge. By contrast tB¢1/N?) correction toz,,
vanishes in three dimensions. We have repeated our earlier

O(e*) in d=4—2¢ and compared with the previous dimen- Padeapproach forg, to see if the convergence is improved
sionally regularized four-looMS perturbative calculation of Put this does not lead to a small change to the previous

the same critical exponent. The res{d?) is in exact agree-

values for the exponents. This is in part due to the fact that

ment, which is a nontrivial check on our computation sinceth® exponents; and » do not lend themselves to improve-

only three-loop graphs are presenytl/N?). With Eq. (17)
we can expand to aeworder ine and find

d=1+ete?+e+et+e
—[8e—8€>—16{1—{(3)}e*—24{1— £(4)}€°](1IN)
+[64e— 124e®>— 4{43+60(3)} €
+{6407(5)—360(4) +976/(3) — 155 ¢*

ment by this approach. Instead one way of gaining estimates
from our largeN results is to use the accepted valuesnpof
and v and our value foryp,. Indeed in Ref[11] the four-
loop estimate forp, was determined in an analogous fash-
ion. Therefore, takingy to be 0.033 and 0.033 andto be
0.669 and 0.705 foN=2 and 3, respectively7] we find the
values for¢. are 1.044 and 1.196. These are in poor agree-
ment with the respective results of R¢8]. For the expo-
nents 3. and vy, the largeN corrections are also large for
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small N and each series appears to converge slowly. To ap- TABLE Il. PadeBorel estimates of crossover exponents.

preciate this we have evaluated the above expressions feF

larger values ofN. For N = 8 we find ¢.=1.475, S, N be Be Ye Bet ve
0.998, andyc 0.567. By contrast whelN=16 our ex 5 0.988 0664 0367 1031
pressions give 1.767, 0.977, and 0.790 for the same respec-
. . 3 1.187 0.768 0.459 1.227
tive exponents which, by contrast, compare much more fa-
. : 4 1.323 0.830 0.529 1.359
vorably with the respective values of 1(Bj, 0.996), and
5 1.422 0.871 0.582 1.453
0.77(12) of Ref{9] 8 1.603 0.934 0.689 1.623
In order to improve the convergence of the series we have ' ’ ' ’
16 1.790 0.980 0.817 1.797

also examined the PadBorel resummation of the largn
series. This involves determining the Borel function of the
series that is defined by

o0 1 I lo'e]
> anx”=—f dt e x>
n=0 X

0 n=0

are in fairly reasonable agreement. Fo#2 and 3 the esti-
mates undershoot those of RES] though the combination
Bt . is closer. For the other exponents the valuesfdpr

are competitive foN=5 whilst those fory, appear to be in
good agreement for the lower range Nf

In conclusion, we have provided ti@(1/N?) corrections

a set of crossover exponents related to the composite op-
erator T2° in O(N) ¢* theory. Although the leading order
exponents could be summed to give numerical estimates that

apt"

n! ’

(23

and then taking a Padapproximant of the integrand given

that only several terms in the series are known. Thereforc—ib

for ¢, its PadeBorel estimate is

- e Nt
dt

¢c:2Nf0 (1—ajt+(a2—tapt?] (249 are competitive with explicit perturbative calculations in
! 1o2%2 three dimensions th@ew higher-order correction indicate
where that the series are slowly converging. Applying the 'Pade_
Borel resummation technique generally improves the esti-
16 32972+ 16] i i i i
A a— (25) mates in comparison with the results of REJ] though it
;o 72 ot ought to be borne in mind thad(1/N?) results represent

only three terms of a series in contrast to Rgf] which
We have evaluated the integral numerically for various val-analyzed six terms of a series. Nevertheless since the critical
ues ofN and recorded the results in Table 1l where the esti-exponents are computed ¢hdimensions they will comple-
mates for8. andy. by the same method are also given. Thement future higher-order perturbative calculations and, fur-
final column is the sum of the estimates in the second anther, the largeN method can equally be applied to the deter-
third columns and represents another way of estimafipg mination of crossover exponents of bilinear and other
through the scaling relation since we have noted that theomposite operators to the same lalgeorder in this and

large N series for¢, appears to diverge rapidly for low.
For N=4 the largeN estimates forp, and the sumB;+ v,

other scalar quantum field theories which underpin critical
phenomena.
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